Process-Monitoring-for- Quality — A Model Selection Criterion for Shallow Neural Networks
نویسندگان
چکیده
منابع مشابه
Efficient Parameters Selection for CNTFET Modelling Using Artificial Neural Networks
In this article different types of artificial neural networks (ANN) were used for CNTFET (carbon nanotube transistors) simulation. CNTFET is one of the most likely alternatives to silicon transistors due to its excellent electronic properties. In determining the accurate output drain current of CNTFET, time lapsed and accuracy of different simulation methods were compared. The training data for...
متن کاملNeural Networks Ensemble for Quality Monitoring
product quality level is a key concept for companies' competitiveness. Different tools may be used to improve quality such as the seven basic quality tools or experimental design. In addition, the need of traceability leads companies to collect and store production data. Our paper aims to show that we can ensure the required quality thanks to an "on line quality approach" based on exploitation ...
متن کاملinvestigating the feasibility of a proposed model for geometric design of deployable arch structures
deployable scissor type structures are composed of the so-called scissor-like elements (sles), which are connected to each other at an intermediate point through a pivotal connection and allow them to be folded into a compact bundle for storage or transport. several sles are connected to each other in order to form units with regular polygonal plan views. the sides and radii of the polygons are...
A Prediction Divergence Criterion for Model Selection
The problem of model selection is inevitable in an increasingly large number of applications involving partial theoretical knowledge and vast amounts of information, like in medicine, biology or economics. The associated techniques are intended to determine which variables are “important” to “explain” a phenomenon under investigation. The terms “important” and “explain” can have very different ...
متن کاملNovel Radial Basis Function Neural Networks based on Probabilistic Evolutionary and Gaussian Mixture Model for Satellites Optimum Selection
In this study, two novel learning algorithms have been applied on Radial Basis Function Neural Network (RBFNN) to approximate the functions with high non-linear order. The Probabilistic Evolutionary (PE) and Gaussian Mixture Model (GMM) techniques are proposed to significantly minimize the error functions. The main idea is concerning the various strategies to optimize the procedure of Gradient ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annual Conference of the PHM Society
سال: 2019
ISSN: 2325-0178,2325-0178
DOI: 10.36001/phmconf.2019.v11i1.816